Strange Loop: The Biological Path Toward Strong AI

This video was recorded on September 29, 2017 at Strange Loop in St. Louis, MO. Strange Loop is a multi-disciplinary conference that brings together the developers and thinkers building tomorrow’s technology in fields such as emerging languages, alternative databases, concurrency, distributed systems, security, and the web.

Video

Slides

## Abstract

Today’s wave of AI technology is still being driven by the ANN neuron pioneered decades ago. Hierarchical Temporal Memory (HTM) is a realistic biologically-constrained model of the pyramidal neuron reflecting today’s most recent neocortical research. This talk will describe and visualize core HTM concepts like sparse distributed representations, spatial pooling and temporal memory. Strong AI is a common goal of many computer scientists. So far, machine learning techniques have created amazing results in narrow fields, but haven’t produced something we could all call “intelligent”. Given recent advances in neuroscience research, we know a lot more about how neurons work together now than we did when ANNs were created. We believe systems with a more realistic neuronal model will be more likely to produce Strong AI. Hierarchical Temporal Memory is a theory of intelligence based upon neuroscience research. The neocortex is the seat of intelligence in the brain, and it is structurally homogeneous throughout. This means a common algorithm is processing all your sensory input, no matter which sense. We believe we have discovered some of the foundational algorithms of the neocortex, and we’ve implemented them in software. I’ll show you how they work with detailed dynamic visualizations of Sparse Distributed Representations, Spatial Pooling, and Temporal Memory.

Authors

Matthew Taylor • Open Source Community Manager

Share