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NETWORK DETAILS

Key network parameters for the GSC network used to test robustness. Networks 
used in the FPGA implementation were similar but larger and sparser.

FPGA implementations show that sparse networks can be >50X faster

SPARSE NETS ARE FAR MORE EFFICIENT

FPGA (Field Programmable Gate Arrays) platforms are ideal for sparse computations. 
We implemented our sparse GSC network on three different Xilinx FPGA platforms.

Alveo U250 Zynq™ UltraScale+ 
ZCU104

Zynq™ UltraScale+ 
ZU3EG

Overall throughput is more than 50X higher for sparse networks

>25X improved energy efficiency >10X faster than NVIDIA Tesla V100

Dataset of labeled color images with 10 total categories.

Sparse networks again performed significantly better under noise.

CIFAR-10

Dataset of one word spoken commands with 65,000 utterances.
State of the art accuracy is between 95 - 97.5%

We trained dense and sparse convolutional networks, and tested their average accuracies 
under a wide range of noise values.

Sparse networks had a significantly better noise score, even with 10% as many weights.
Small dense networks did worse, showing the benefits of sparsity and high dimensionality.

SPARSE NETWORKS ARE MORE ROBUST
Google Speech Commands Dataset (GSC)

The networks are trained using standard backpropagation. 
For implementation details, please see: https://arxiv.org/abs/1903.11257 

Each layer of the sparse network: 
 1) Contains sparse weights enforced by a binary mask
 2) Replaces ReLU with a k-winner-take-all activation function
 2) Incorporates a boosting function to maximize entropy
     and prevent dead units

Modeling biology, we create networks with both 
sparse activations and sparse connections

TRAINING SPARSE NETWORKS
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The probability of error decreases dramatically 
with high dimensionality and input sparsity:

A tiny number of synapses, subsampling from a much 
larger pattern, is sufficient for robust recognition:
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Sparse representations are highly “stable” and robust to perturbations and 
noise. The dot product between two vectors is the fundamental operation in 
neural networks. We can quantify the robustness by measuring probability of 
matches to random vectors.

Each dendritic segment has s synapses and represented by a binary vector 
D with n components and s “1” bits:

Activity in presynaptic region at time t represented by a binary vector At with 
n components and at active cells:

SPARSE REPRESENTATIONS IMPROVE EXPONENTIALLY WITH DIMENSIONALITY

counts the number of input vectors that 
exactly match b synapses on the dendrite

|ΩD(n, a, b)|

P (At ·D ≥ θ) =
s
b=θ | ΩD(n, at, b) |

n
at

Probability of a random input matching a dendrite:

Number of ways to select 
exactly b out of s synapses

|ΩD(n, a, b)| = s

b
× n− s

a− b Number of vectors that have 
a-b bits on and no overlap with 
dendrite.
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White circles represent all points whose 
dot products are within θ of some target 
point. As you decrease θ, the set of 
matching points increases, but there is an 
increasing risk of false matches 
(overlapping white circles).

For sparse representations, as you increase the 
dimensionality the space between white circles 
increases much faster than the size of the white 
circles, even though the number of non-zero 
components is unchanged. This means that the 
representations become far more robust to 
matches due to random noise.

SPARSITY IN THE NEOCORTEX

Deep learning systems are nothing like this. 
Activations are far more dense (close to 50%). 
Weight matrices are 100% dense.

Can deep learning networks benefit from sparsity?

If a layer of cells projects to another layer, what percentage are connected?

Best estimates: 
1% - 10% of possible neuron to 
neuron connections exist

(Holmgren et al., 2003; Lennie, 2003)

Connection sparsity

Best estimates: 
0.5% to 2% of cells are active at a time 

(Willmore & Tolhurst, 2001; Attwell & Laughlin, 
2001; Lennie, 2003; Graham & Field, 2007)

How many neurons are active right now?
Population sparsity

SUMMARY
1) Most deep learning systems rely on dense representations. 
This is in stark contrast to the neocortex, which relies on highly 
sparse representations.

2) The neocortex is sparse in at least two very different ways: a) 
the instantaneous activity of neurons is highly sparse, and b) the 
connectivity between neurons is also extremely sparse.

3) We show that deep learning can benefit significantly by moving 
to networks that are sparse in both activations and connections.

Contributions:
- Sparse representations are extremely robust, 
particularly when dimensionality is high.

- We train networks with sparse activations and 
weights, trained by back propagation.

- We demonstrate sparse networks are more robust 
than dense networks on speech and vision datasets.

- We show sparse networks can be extremely efficient, 
>50 times more efficient than dense networks.

Sparsity in the Neocortex, and its 
Implications for Machine Learning
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