

SUMMARY

1) Most deep learning systems rely on dense representations. This is in stark contrast to the neocortex, which relies on highly sparse representations.

2) The neocortex is sparse in at least two very different ways: a) the instantaneous <u>activity of neurons is highly sparse</u>, and b) the <u>connectivity between neurons is also extremely sparse</u>.

3) We show that deep learning can benefit significantly by moving to networks that are sparse in both activations and connections.

Contributions:

- Sparse representations are extremely robust, particularly when dimensionality is high.

- We train networks with sparse activations and weights, trained by back propagation.

- We demonstrate sparse networks are more robust than dense networks on speech and vision datasets.

- We show sparse networks can be extremely efficient, >50 times more efficient than dense networks.

The networks are trained using standard backpropagation. For implementation details, please see: https://arxiv.org/abs/1903.11257

Sparsity in the Neocortex, and its **Implications for Machine Learning**

SPARSITY IN THE NEOCORTEX

Deep learning systems are nothing like this. Activations are far more dense (close to 50%). Weight matrices are 100% dense.

Can deep learning networks benefit from sparsity?

SPARSE NETWORKS ARE MORE ROBUST

Google Speech Commands Dataset (GSC)

Dataset of one word spoken commands with 65,000 utterances. State of the art accuracy is between 95 - 97.5%

We trained dense and sparse convolutional networks, and tested their average accuracies under a wide range of noise values.

Network	Test Score	NOISE SCORE	PARAMS
DENSE CNN	97.05 ± 0.20	$31.08 \pm 2.46 \\ 44.45 \pm 2.54$	1.7M
Sparse CNN	97.03 ± 0.14		160,952
DENSE SMALL1	96.14 ± 0.73	26.57 ± 2.39	536,008
DENSE SMALL2	95.89 ± 0.51	26.29 ± 3.11	270,376

Sparse networks had a significantly better noise score, even with 10% as many weights. Small dense networks did worse, showing the benefits of sparsity and high dimensionality.

CIFAR-10

Dataset of labeled color images with 10 total categories.

Noise	DenseNet	NotSoDenseNet	VGG19-Dense	VGG19-Sparse
0.0%	92.80	93.09	93.24	92.10
2.5%	86.34	87.50	85.07	86.21
5.0%	77.19	79.10	75.88	79.00
7.5%	66.22	69.52	63.60	71.34
10.0%	55.10	61.13	52.41	64.18
12.5%	45.79	52.10	42.25	56.49
15.0%	38.67	45.25	35.25	50.86
17.5%	33.03	39.60	29.37	45.00

Sparse networks again performed significantly better under noise.

Sparse representations are highly "stable" and robust to perturbations and noise. The dot product between two vectors is the fundamental operation in neural networks. We can quantify the robustness by measuring probability of matches to random vectors.

Each dendritic segment has s synapses and represented by a binary vector D with n components and s "1" bits:

Activity in presynaptic region at time t represented by a binary vector A, with n components and a, active cells:

Probability of a random input matching a dendrite:

$$P(\mathbf{A}_t \cdot \mathbf{D} \ge \theta) = \frac{\sum_{b=\theta}^s \mid \Omega_{\mathbf{D}}(n, a_t, b)}{\binom{n}{a_t}}$$

counts the number of input vectors that $|\Omega_{\mathbf{D}}(n, a, b)|$ exactly match *b* synapses on the dendrite

$$|\Omega_{\mathbf{D}}(n, a, b)| = \begin{pmatrix} s \\ b \end{pmatrix} \times \begin{pmatrix} n-s \\ a-b \end{pmatrix}$$

Number of ways to select exactly *b* out of *s* synapses

Number of vectors that have *a-b* bits on and no overlap with dendrite

SPARSE NETS ARE FAR MORE EFFICIENT

FPGA implementations show that sparse networks can be >50X faster

FPGA (Field Programmable Gate Arrays) platforms are ideal for sparse computations. We implemented our sparse GSC network on three different Xilinx FPGA platforms

Overall throughput is more than 50X higher for sparse networks

>25X improved energy efficiency

Name of chip	Network type	System power	Words / Watt	Relative efficiency (compared to best dense network)
Alveo U250	Dense	225	54	0.507
Alveo U250	Sparse	225	2,778	26.00
ZCU104	Dense	60	107	1.0
ZCU105	Sparse	60	1,333	12.48
ZU3EG	Dense	24	0	-
ZU3EG	Sparse	24	877	8.211

>10X faster than NVIDIA Tesla V100

Alveo U250 Dense 500 12,195 Alveo U250 Sparse N/A (streaming) 625,000 Tesla K80 Dense 256 16,024 Tesla K80 Dense 1024 17,710 Tesla K80 Dense 8192 20,118 Tesla V100 Dense 256 45,450	Platform	Network type	Batch size	Overall throughput
Alveo U250 Sparse N/A (streaming) 625,000 Tesla K80 Dense 256 16,024 Tesla K80 Dense 1024 17,710 Tesla K80 Dense 8192 20,118 Tesla V100 Dense 256 45,450	Alveo U250	Dense	500	12,195
Tesla K80 Dense 256 16,024 Tesla K80 Dense 1024 17,710 Tesla K80 Dense 8192 20,118 Tesla V100 Dense 256 45,450	Alveo U250	Sparse	N/A (streaming)	625,000
Tesla K80 Dense 1024 17,710 Tesla K80 Dense 8192 20,118 Tesla V100 Dense 256 45,450	Tesla K80	Dense	256	16,024
Tesla K80 Dense 8192 20,118 Tesla V100 Dense 256 45,450	Tesla K80	Dense	1024	17,710
Toolo V/100 Donoo 256 /5 /50	Tesla K80	Dense	8192	20,118
Dense 200 45,430	Tesla V100	Dense	256	45,450
Tesla V100 Dense 1024 61,638	Tesla V100	Dense	1024	61,638
Tesla V100 Dense 8192 54,301	Tesla V100	Dense	8192	54,301

>25X efficiencv

Subutai Ahmad and Jeff Hawkins

sahmad@numenta.com,jhawkins@numenta.com

Network	L1 CHANNELS	L2 CHANNELS	L3 N
GSC			
DENSECNN2	64	64	1000
SPARSECNN2	64	64	1000
DENSESMALL1	32	32	300
DENSESMALL2	32	64	300

NETWORK	L1 ACTIVATION SPARSITY	L2 ACTIVATION SPARSITY	L3 ACTIVATION SPARSITY
GSC			
DENSECNN2	RELU	RELU	RELU
SPARSECNN2	90.5%	87.5%	90.0%
DENSESMALL1	RELU	RELU	RELU
denseSmall2	RELU	RELU	RELU
NETWORK	L1 WEIGHT SPARSITY	L2 WEIGHT SPARSITY	L3 WEIGHT SPARSITY
GSC			
DENSECNN2	0.0%	0.0%	0.0%
SPARSECNN	2 50.0%	80.0%	90.0%
DENSESMALI	L1 0.0%	0.0%	0.0%
DENSESMALI	L2 0.0%	0.0%	0.0%

Key network parameters for the GSC network used to test robustness. Networks used in the FPGA implementation were similar but larger and sparser.

References

J. Hawkins, S. Ahmad, Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex, Front. Neural Circuits. 10 (2016) 1–13.

Cui, Y., Ahmad, S., & Hawkins, J. (2017). The HTM Spatial Pooler – a neocortical algorithm for online sparse distributed coding. Frontiers in Computational Neuroscience, 11, 111. https://doi.org/10.3389/FNCOM.2017.00111

Ahmad, S., & Scheinkman, L. (2019). How Can We Be So Dense? The Benefits of Using Highly Sparse Representations. ArXiv:1903.11257 [Cs.LG]. http://arxiv.org/abs/1903.11257