Numenta Logo

Technology Overview

Intro to Our Technology youtube video screenshot
Video: Intro to Our Technology (02:23)

HTM

Based on a wealth of neuroscience evidence, we have created HTM (Hierarchical Temporal Memory), a technology that is not just biologically inspired. It’s biologically constrained. When applied to computers, HTM is well suited for prediction, anomaly detection and ultimately sensorimotor applications. We believe this technology will be the foundation for the next wave of computing.

At the core of HTM are learning algorithms that can store, learn, infer and recall high-order sequences. Unlike most other machine learning methods, HTM learns time-based patterns in unlabeled data on a continuous basis. HTM is robust to noise, and high capacity, meaning that it can learn multiple patterns simultaneously.

HTM works best with data that meets the following characteristics:

  • Streaming data rather than batch data files
  • Data with time-based patterns
  • Many individual data sources where hand crafting separate models is impractical
  • Subtle patterns that can’t always be seen by humans
  • Data for which simple techniques such as thresholds yield substantial false positives and false negatives

Our technology has been tested and implemented in software, all of which is developed with best practices and suitable for deploying in commercial applications.


Anomaly Detection Benchmark

Anomaly Detection Benchmark

The need for anomaly detection has grown, as the Internet of Things has produced a world that’s overflowing with streaming data. As these data sources continue to grow, so does the need for anomaly detection.

Uncovering anomalies allows you to:

  • Detect potential machine failures
  • Recognize changes in Twitter activity
  • Identify unexpected traffic patterns

We created the Numenta Anomaly Benchmark (NAB) in order to be able to measure and compare results from algorithms designed to find anomalies in streaming data. NAB is an open source framework consisting of:

  • A dataset with real-world, labeled data files
  • A scoring mechanism that rewards early detection and on-line learning

Learn more about the Numenta Anomaly Benchmark.


HTM Studio

HTM Studio

HTM Studio is a free, desktop tool that lets you find real-time anomalies in your streaming data without having to program, code or set parameters.

Download HTM Studio and try it for yourself.


HTM Applications

HTM Applications

While Numenta does not build commercial applications, we have created example HTM applications in several fields such as monitoring stock performance, detecting unusual human behavior, and finding patterns in geospatial data. We are confident that many additional applications will be created in the future.

View and download our example applications.