

Sparsity Enables 50x Performance
Acceleration in Deep Learning Networks

A Technology Demonstration

Numenta Whitepaper

VERSION 1.0, OCTOBER 30, 2020
© Numenta, Inc. 2020
https://numenta.com/

https://numenta.com/

2

EXECUTIVE SUMMARY
Deep learning networks today have accomplished a great deal but are hitting bottlenecks as

they scale to more complex tasks and bigger models. Researchers attempt to break through the

bottleneck by adding more compute power and training data. These enormous models consume

vast amounts of power, limiting scalability and creating environmental damage. We need a new

algorithmic approach to achieve breakthroughs in performance and scalability.

Although deep learning techniques use neuroscience-like terminology, in fact they operate very

differently than the human brain. Unlike deep learning networks, the brain is highly efficient,

requiring a mere 20 Watts to operate, less power than a lightbulb. At Numenta, we believe that

by studying the brain and understanding what makes it so efficient, we can create new

algorithms that approach the efficiency of the brain.

How is the brain so efficient? There are many reasons, but at its foundation is the notion of

sparsity. The brain stores and processes information as sparse representations. At any given

time, only a small percentage of neurons in the brain are active. This sparsity may vary from

less than one percent to a few percent of neurons being active, but it is always sparse. In

addition, unlike deep learning networks, the connectivity between neurons in the brain is also

highly sparse. In this whitepaper, we demonstrate the application of Numenta’s brain-inspired,

sparse algorithms to machine learning. Using these algorithms on Xilinx Field Programmable

Gate Array (FPGA) chips and the Google Speech Commands (GSC) dataset, we show the

substantial benefits of leveraging sparsity in order to scale deep learning models.

Sparse networks perform inference 50 times faster than dense

networks, with competitive accuracy.

This dramatic speed improvement could provide great benefits, enabling:

● Implementation of far larger networks using the same resource

● Implementation of more copies of networks on the same resource

● Implementation of sparse networks on edge platforms with limited resources

where dense networks do not fit

● Massive energy savings and lower costs due to scaling efficiencies

This technology demonstration is the beginning of a robust roadmap based on our deep

neuroscience research. Not only can we achieve even faster speed-ups on the GSC dataset by

adding more sparse networks on chip, we also can apply these sparse techniques to other

FPGA and other hardware platforms and more complex datasets like image recognition.

Further, we can apply sparse networks to training tasks, which could lead to reduced training

time and smaller training sets. Moreover, we plan to implement continual learning, which offers

the promise of substantial benefits over batch training. Beyond sparsity, as we add more

elements of our neocortical model, we expect additional benefits in unsupervised learning,

robustness and sensorimotor behavior.

3

Table of Contents

PERFORMANCE PROBLEMS IN DEEP LEARNING .. 4

NEUROSCIENCE SOLUTIONS ... 5

The Efficient Brain ..5

Sparse Representations ..5

TECHNOLOGY DESCRIPTION ... 6

Choosing the dataset ..6

Creating the sparse network ...6

Choosing a hardware platform ..8

Implementing the networks ..9

Running the performance tests ... 10

DETAILED RESULTS... 10

Throughput .. 10

Power usage ... 11

Resource utilization .. 13

Comparison with GPUs ... 14

Summary of results ... 15

FUTURE WORK .. 15

CONCLUSION ... 16

REFERENCES .. 17

APPENDIX .. 18

Reproducibility ... 18

Glossary ... 18

Design Flow .. 18

Sparse network implementation details .. 19

4

PERFORMANCE PROBLEMS IN DEEP LEARNING
Over the last decade, deep learning networks have accomplished a great deal but are hitting

bottlenecks as they scale to more complex applications. Researchers attempt to break through

the bottleneck by creating ever larger models, adding more and more compute power, and more

and more training data.1,2 Additionally, these enormous models consume vast amounts of

power, limiting scalability and creating environmental damage.3 We believe that a new

algorithmic approach is required to achieve breakthroughs in performance and scalability.

In contrast to today’s deep learning models the brain is amazingly efficient, and provides a

roadmap as to how to break through these scaling barriers. By studying the brain and

understanding what makes it so efficient, we can create new algorithms based on neuroscience

principles.

At Numenta we have done exactly that for over 15 years. Our focus is the neocortex, which is

the largest brain region, and the area primarily responsible for our intelligence. The foundation

of neocortical efficiency is that the brain stores and processes information as sparse

representations. In our past work we have described some of the benefits of sparsity to areas

such as robustness and continuous learning. In this whitepaper we show that by applying the

principles of sparsity to deep learning, we can lay the groundwork for breakthrough performance

acceleration. By implementing Numenta’s sparse algorithms on Xilinx FPGAs we demonstrate

these principles on inference tasks using the Google Speech Commands (GSC) dataset.

Our results show a speed-up of 50x with competitive accuracy.

This technology demonstration is the beginning of a robust roadmap based on our deep

neuroscience research. Not only can we achieve performance improvements on inference, the

principles of sparsity can also lead to dramatically improved training times. Going beyond

sparsity, as we incorporate more elements of our cortical model, we can shrink the size of

training sets and reduce the need for large, manually labeled datasets. Moreover, we can

enable continual learning similar to humans, which will eliminate the need to constantly retrain

the model on the entire training set (batch training). Taken together, these techniques will

eventually provide several orders of magnitude improvements in scaling. We also expect to see

additional benefits in generalization, robustness, and sensorimotor behavior.

5

NEUROSCIENCE SOLUTIONS
The Efficient Brain
It is easy to intuit that the human brain solves problems much more efficiently than a deep

learning network. Brains are estimated to require a mere 20 watts of power to perform a wide

range of tasks, from reasoning to language, processing visual and auditory inputs and executing

complex behaviors.4 In contrast, today’s deep learning networks are energy hogs and often

require large amounts of training running on many servers for many days. For example, a recent

study from University of Massachusetts, Amherst, showed that a single large Transformer

model (a natural language processing model) consumed 656,000 Kwh at a cost of $1M- $3M

just to train the network.5

How is the brain so intelligent with such amazing efficiency? One reason is that most of the

neocortex is sparse. It stores and processes information in the context of extremely sparse

neural activity and sparse connectivity. Sparsity is foundational to the comprehensive theory of

cortical function we have developed called the Thousand Brains Theory of Intelligence6. It is

beyond the scope of this paper to describe the theory in detail, but it is extensively documented

in peer-reviewed papers7. We discuss applying some additional aspects of the theory in the

Future Work section.

Sparse Representations

One of the most remarkable observations about the neocortex is that no matter where you look,

the activity of neurons is sparse; only a small percentage of neurons are sending signals at any

point in time. The activity might vary from less than one percent to several percent, but it is

always extremely sparse. In addition, unlike deep learning networks, the connectivity between

neurons in the brain is also sparse. We have shown through mathematical analysis and

simulation that sparsity enables efficient use of resource, generalization and robustness. For

more details on the nature of sparsity, see Chapter 3 of our digital book Biological and Machine

Intelligence (BAMI)8 and our paper, “How Can We Be So Dense? The Benefits of Using Highly

Sparse Representations.”9

By contrast, traditional deep learning uses dense representations, which requires many more

computations. For example, in performing matrix multiplication for a dense network, each row

vector must be multiplied by each column vector. In a sparse network most of the matrix values

are zero. When sparse rows and columns are multiplied together, a large fraction of the

products can be eliminated. The challenge is to train networks such that you can have high

levels of sparsity without sacrificing accuracy by using a hardware implementation which can

efficiently compute the non-zero products.

https://numenta.com/neuroscience-research/research-publications/papers/a-framework-for-intelligence-and-cortical-function-based-on-grid-cells-in-the-neocortex/
https://numenta.com/neuroscience-research/research-publications/papers/
https://numenta.com/assets/pdf/biological-and-machine-intelligence/BaMI-SDR.pdf
https://numenta.com/resources/biological-and-machine-intelligence/
https://numenta.com/resources/biological-and-machine-intelligence/
https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257

6

TECHNOLOGY DESCRIPTION
To validate the efficiency of sparse networks, we compared inference performance between

dense and sparse deep learning networks. In order to do so, we went through the following

steps:

1. Choose a dataset for the comparison.

2. Create a sparse neural network for the dataset.

3. Choose a hardware platform to run the comparison tests.

4. Implement both the sparse and dense networks on the chosen hardware platform.

5. Run performance tests on both networks.

6. Compare the results.

Choosing the dataset
We chose the Google Speech Commands (GSC) dataset, which consists of 65,000 one-second

long utterances of keywords spoken by thousands of individuals. The task is to recognize the

word being spoken from the audio signal. This task is representative of modern embedded

smart home applications that respond to speech commands. Standard convolutional networks

on this dataset achieve accuracies around 92% for 10 categories, whereas more complex

ResNet architectures achieve accuracies around 96-97%.

Creating the sparse network
We created the sparse network with highly sparse weights and activations, like in the neocortex.

To achieve this result, we made two modifications to the standard deep learning layer (see also

Figure 1):

1. We initialized the weights using a sparse random mask, so that only a fraction of the

weights contain non-zero values.

2. We created sparse activations by maintaining only the top-k active units of each

layer; the rest are set to zero. This k-winner step is non-linear and can be thought of

as a substitute for the ReLU function.

The above formulation is an extension of our previous work on the HTM Spatial Pooler10,

adapted for neural networks trained with back-propagation.

https://numenta.com/neuroscience-research/research-publications/papers/htm-spatial-pooler-neocortical-algorithm-for-online-sparse-distributed-coding/

7

Our dense GSC network is a standard convolutional network with two convolutional layers, a

linear hidden layer plus an output layer. As is standard practice in speech processing, the raw

audio signals are converted to 32-band Mel spectograms before being fed to the network. Our

sparse GSC network is identical to the dense network except it contains sparse weights and the

k-winner take all function as described above. The accuracies of our sparse and dense

networks are in the range of 96.4% to 96.9%. The sparse network contains 127,696 non-zero

weights compared to 2,522,128 weights in the dense network, or about 95% sparse. The

activations in the sparse network range from 88% to 90% sparsity, depending on the layer.

The sparsity levels in our networks are much higher than what is commonly seen in the deep

learning literature. In such high sparsity regimes, it is possible for a small subset of the neurons

to dominate and become active for a large percentage of the patterns. In this situation the

network is limited to a small fraction of the possible patterns. To address the issue, we employ a

boosting function during training, which favors units that are inactive.

Details of our sparse network, other implementation issues, and our use of the GSC and other

datasets are discussed in Numenta’s research paper, “How Can We Be So Dense? The

Benefits of Using Highly Sparse Representations.”9

For our hardware implementation, we also apply a “block sparsity” constraint to the weights of

our sparse network. To create a block-sparse matrix, the weight matrix is structured in a way

where a large matrix is divided into smaller matrices with most blocks containing only zero

values and a few blocks containing only non-zero values. This structure aids in compression

and efficiently using the on-chip processing logic. The weights are quantized to 8 bits before

running on the FPGA.

Figure 1: Standard dense layer vs our sparse layer. Our sparse layer contains both sparse
weights and sparse activations.

https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257

8

Choosing a hardware platform
In sparse systems a majority of the computation results are zero (since a majority of the inputs

are also zero). If the machine knows in advance the location of the zeros, it can skip many

useless operations. In addition only the non-zero weights need to be stored, which results in a

much smaller memory footprint. In principle this idea is simple but in practice it is challenging to

find hardware architectures that can exploit both these properties of sparse systems.

We chose an FPGA (Field Programmable Gate Array) as the hardware platform to run the

performance tests because of the flexibility it provides in handling sparse data efficiently.

FPGAs can do as many arbitrary functions in parallel as it has logical elements (thousands to

several million). When processing sparse data, an FPGA can be programmed to ignore zeros

and only compute non-zero values, in addition to computing functions such as k-winner. It is

currently not possible to parallelize these efficiently in a GPU or CPU. In addition, random

access to memory is far more granular and efficient on an FPGA, enabling FPGA

implementations to efficiently handle the unstructured access patterns in sparse networks. This

ability to program the FPGA in a flexible manner allows it to process sparse data orders of

magnitude faster and much more energy-efficient than a CPU or GPU.

Overall there are two main reasons why sparse networks are more efficient than dense

networks on an FPGA platform:

● Fewer computations because the logic on chip can skip zeros and enables computations

with non-zero elements to be performed efficiently

● Smaller memory footprint because only non-zero elements are stored, enabling the chip

to run more networks simultaneously

Note that these two reasons have a multiplicative effect when considering overall system

throughput. For example, if a sparse network is twice as fast as the dense network, and you can

fit three times as many networks on the chip, the sparse system will process six times as many

inputs per second as the dense version. Depending on the achievable sparsity of the network,

these two factors contribute to a net performance improvement that can be several orders of

magnitude higher.

For our technology demonstration, we chose three off-the-shelf Xilinx FPGAs and Platforms: the

Alveo™ U250, the Zynq™ UltraScale+ ZCU104, and the Zynq™ UltraScale+ ZU3EG. The

Alveo U250 is a powerful platform designed for datacenters. The Zynq class of FPGAs are

much smaller and designed for embedded applications. Table 1 shows the relative capabilities

of the three FPGA platforms. As we show later, our sparse network is able to run efficiently on

even the smallest of these platforms (unlike the dense network).

9

Note that although we feel FPGAs are an ideal platform for this approach, we also believe that

current generation CPUs and GPUs would achieve benefits from sparsity, just not as dramatic.

In the future, we propose exciting architecture enhancements to CPUs and GPUs that would

enable greater use of sparsity for substantial performance gains.

Implementing the networks
We ran the dense and sparse networks on the above Xilinx FPGA platforms. We also used

FPGA design tools for programming, block diagram, functional testing, regression and overall

integration.

We implemented the dense GSC network with the Xilinx software “Vitis AI,” which is a highly

optimized solution for deploying deep learning networks on the Xilinx chips. After specifying the

parameters and weights, the software generates a complete FPGA design and the required

software “drivers” at the OS level.

We implemented the sparse network using a tool called Proximus (see Appendix for details).

The sparse GSC network implementation is made up of sparse convolutional layers, sparse

linear layers, k-winner-take-all modules, plus input/output (host interface) modules. Since each

sparse network instance is small compared to a dense network instance, multiple sparse GSC

network instances can fit in one FPGA. In the FPGA implementation described below, using an

Alveo U250 board, up to five sparse GSC networks fit in one “Super Logic Region” (SLR). There

are four SLRs on an Alveo U250, which means there are 20 sparse network instances on the

full Alveo board, compared to four total dense network instances (one per SLR).

For more information on implementation details, see the Appendix.

FPGA platform System logic cells Internal

Memory

DSP slices System power

Alveo U250 1,728,000 54MB 12,288 225W

Zynq™ UltraScale+ ZCU104 504,000 4.75MB 1,728 60W

Zynq™ UltraScale+ ZU3EG 154,000 0.95MB 360 24W

Table 1: This table lists the relative capabilities of the three Xilinx FPGA platforms.

10

Running the performance tests
We ran the performance tests on each of the FPGA platforms, installed in a server. The dense

network and sparse network test run on the same card, sequentially, by downloading the

selected network into the card and then feeding in input data. For the purposes of this test, the

input data is a repeating sequence of 50,000 pre-processed audio samples (audio sample

processing is not part of these tests).

DETAILED RESULTS
In this section we describe the measured performance of dense vs. sparse networks on the

various platforms. For sparse networks we show a few different configurations where we vary

the number of network copies that are placed on the chip. We compare performance using three

different metrics: throughput, power usage, and resource utilization.

Throughput
Our throughput metric measures the total number of inputs processed per second on the entire

chip, specifically the number of words processed per second. Table 2 shows the throughput on

each platform for a variety of dense and sparse configurations. (Since some configurations can

have multiple networks on chip, we show single network throughput as well as overall

throughput numbers.)

FPGA
platform

Network
type

Throughput
per network,
words/sec

Speedup
over
dense

Number
of
networks
on chip

Full chip
throughput
(words/sec)

Full chip
speedup

Alveo U250 Dense 3,049 - 4 12,195 -

Alveo U250 Sparse v1 35,714 11.71 1 35,714 2.93

Alveo U250 Sparse v2 35,088 11.51 5 175,439 14.39

Alveo U250 Sparse v3 31,250 10.25 20 625,000 51.25

ZCU104 Dense 6,410 - 1 6,410 -

ZCU104 Sparse v1 27,777 4.33 1 27,777 4.33

ZCU104 Sparse v2 26,667 4.16 3 80,000 12.48

ZU3EG Dense 0 - 0 0 -

ZU3EG Sparse 21,053 Infinite 1 21,053 Infinite

Table 2: This table shows the throughput, measured as the number of speech words
processed per second, for dense and sparse networks on three different platforms for a variety
of configurations. The throughput of the 20 network sparse configuration on the Alveo U250 is
51.25 times faster than the fastest dense configuration.

11

As can be seen in the right hand columns, the best sparse network configuration (with 20

network copies on an Alveo U250) can process data at 625,000 words/second, more than 50

times faster than the dense implementation on that platform. On the smaller Zynq ZCU104, the

sparse configuration is over 12 times faster than the dense configuration. The overall system

speedup is due in part to the speed of a single sparse network combined with the fact that we

can fit more sparse networks on each chip.

On a per network basis, sparse networks are also significantly faster than dense networks on all

platforms. On the Alveo U250 the sparse networks are more than 10 times faster than dense

networks. On the ZCU104, a single sparse network is more than 4 times faster than a single

dense network. Note that the per network speed drops by about 10% as we pack more

networks on chip (from 35,714 words/sec to 31,250 words/sec on the Alveo U250). This effect is

likely due to communication bottlenecks, since the amount of data that has to be transferred per

second grows with the number of networks running in parallel. Still, the gain in overall

throughput is far more than the drop in each network’s speed.

The small ZU3EG FPGA is an extremely interesting case in its own right. The dense GSC

network cannot fit on that system. The sparse network is significantly smaller and thus we can fit

a single network on that platform (see the Resource utilization section below). Interestingly, the

throughput of that single sparse network on the small chip is 1.7 times faster than the total

throughput of four dense networks running on the powerful Alveo U250 (21,053 words/sec vs

12,194 words/sec). This result opens up new product categories where ultra small, energy

efficient, embedded platforms can run deep learning based applications without compromise.

Power usage
Power utilization is rapidly becoming an important criterion in measuring the efficiency of deep

learning systems. We use the metric words/second/watt to evaluate power usage. Table 3

shows the numbers for dense vs. sparse networks on the three platforms.

Different chips make different power/performance tradeoffs, and the most efficient dense

configuration actually runs on the ZCU104, at about 107 words/second/watt. The relative

efficiency column on the right measures the power improvement of each implementation relative

to that configuration. As can be seen, the 20 network sparse configuration on the Alveo U250 is

2600% more power efficient than the most efficient dense configuration.

12

Note that measuring exact power usage is tricky. In Table 3 we use the max wattage

measurement of the development board as our power consumption. A specific product using a

custom board should get significantly better absolute power usage across the board, perhaps by

as much as a factor of 4. Nevertheless, we expect the general trends and the relative power

efficiency of sparse networks to largely reflect the results shown in Table 3. It is indisputable

that sparse networks are far more efficient than dense networks.

FPGA
platform

System
power

Network
type

Number of
networks

Words/sec/
watt

Relative
efficiency

Alveo U250 225 Dense 4 54 50.7%

Alveo U250 225 Sparse 1 159 148.6%

Alveo U250 225 Sparse 5 780 729.9%

Alveo U250 225 Sparse 20 2,778 2600.1%

ZCU104 60 Dense 1 107 100.0%

ZCU104 60 Sparse 1 463 433.3%

ZCU104 60 Sparse 3 1,333 1248.0%

ZU3EG 24 Dense 0 0 0

ZU3EG 24 Sparse 1 877 821.1%

Table 3: Overall power usage, measured in words processed per second per watt, for
each configuration. The most efficient dense configuration runs on the ZCU104 (107
words/sec/watt). The relative efficiency column, measured against that
implementation, shows that the sparse networks are far more efficient than the most
efficient dense configuration.

13

Resource utilization
FPGA platforms have a diverse set of compute and memory components, each with different

but overlapping capabilities. Optimizing any implementation often involves balancing between

these various resources. Table 4 shows the percentage utilization of these resources for various

sparse network configurations (we did not have access to the dense network utilization

numbers).

As can be seen from the first row of the table, each sparse network takes up a tiny percentage

of the overall resources on an Alveo U250. This result means that you can have several

networks running in parallel, while still leaving significant room for the rest of the application.

Sparse networks offer much more flexibility than dense networks in achieving high throughput

while still allowing room for other complex application code.

It is worth noting that 20 networks do not consume the whole chip. On such large platforms, the

place and route process gets more challenging as resource utilization gets high. Despite that, by

appropriately rebalancing resources, we estimate that it is possible to pack another 5-10 sparse

networks on the Alveo U250, leading to even higher throughput than reported in this paper.

FPGA
platform

Network
type

Network
copies

LUT usage BRAM
usage

URAM
usage

DSP

Alveo U250 Sparse 1 1.64% 1.72% 2.66% 3.56%

Alveo U250 Sparse 5 7.83% 11.06% 13.28% 17.79%

Alveo U250 Sparse 20 32.10% 42.21% 53.13% 71.22%

ZCU104 Sparse 1 13.21% 29.33% 35.42% 25.29%

ZCU104 Sparse 3 34.15% 78.85% 59.38% 75.87%

ZU3EG Sparse 1 49% 80% NA 94%

Table 4: FPGA resource utilization for a variety of sparse configurations.

14

Comparison with GPUs
Our primary goal in this whitepaper is to highlight the performance advantages of sparse

representations vs. dense representations. To do so, we held the platform constant,

implementing both sparse and dense networks on the same FPGA platforms. We did not

implement an optimized sparse network on GPUs. In this section we provide some approximate

performance numbers of the dense network on two GPU systems to get some rough sense of

the relative speeds.

We used PyTorch to run the dense network on two popular NVIDIA platforms: the Tesla™ K80

and the Tesla™ V100. Table 5 shows the throughput of the dense network on these platforms

for various batch sizes (GPU performance is optimized for high batch sizes). Overall, the dense

network has a consistently higher throughput on GPUs than does the dense network on the

Alveo. However, our sparse networks are significantly faster than any of the dense

implementations, FPGA or GPU. Although it is difficult to compare across widely different

architectures, there is no doubt that an FPGA running a sparse network as described here will

have a substantial price performance advantage over a GPU running a dense network.

Note that these numbers should only be used to get a very rough sense of comparative

performance. There are numerous factors that come into play, such as transistor counts, price

points, chip size, and manufacturing density. In addition to the differences between chips, the

software implementations are very different. The PyTorch implementation uses 32 bit floating

point numbers, whereas the Alveo implementation uses 8 bit integer numbers. It is quite

possible that the GPU throughput of the dense network could be increased with a more

optimized implementation. Nevertheless, the large gap between the sparse and dense network

throughputs shows the clear advantages of our optimized sparse implementations.

Platform Network type Batch size Overall
throughput

Alveo U250 Dense 500 12,195

Alveo U250 Sparse N/A (streaming) 625,000

Tesla K80 Dense 256 16,024

Tesla K80 Dense 1024 17,710

Tesla K80 Dense 8192 20,118

Tesla V100 Dense 256 45,450

Tesla V100 Dense 1024 61,638

Tesla V100 Dense 8192 54,301

Table 5: Throughput for dense networks on two GPU platforms for different batch
sizes. Our sparse networks significantly outperform all dense implementations.

15

Recently NVIDIA has started to invest more heavily on sparsity. On their Ampere architecture

they demonstrated a 50% to 100% improvement over dense networks11. Our networks are

much sparser than the ones they showed and our networks incorporate both activation sparsity

as well as weight sparsity. Given the promise of such highly sparse networks, it is possible that

additional improvements to the underlying GPU architecture could eventually lead to much

larger benefits.

Summary of results
As can be seen throughout the above discussion, sparse networks offer significant performance

benefits over dense networks. An individual sparse network is faster than a comparable dense

network. Since sparse networks are much smaller than dense networks, more copies can be

implemented on the same chip, giving even more throughput speedup. Sparse networks are far

more energy efficient, and our optimized sparse implementation is significantly faster than

dense networks running on more powerful chips (both FPGA and GPU).

FUTURE WORK
This technology demonstration validates that sparsity will be a key factor in scaling deep

learning networks. We are working with strategic partners to commercialize this technology.

Future work will proceed in several directions. First, we believe there is additional opportunity

within this dataset for additional optimizations, thereby enhancing the results further. Second,

we are in the process of applying these techniques to more complex networks (such as ResNet

and Transformer networks), more challenging datasets, and on additional hardware platforms.

Third, this whitepaper has focused on inference tasks, but the same principles apply to training.

We plan to create a technology demonstration to validate that sparsity can significantly improve

the efficiency of training deep learning networks.

Sparsity is foundational to the Thousand Brains Theory, but it is only the beginning. Deep

learning models have had significant challenges beyond performance that can be addressed by

implementing more of the neocortical theory. To begin with, a major challenge faced by these

networks is an inability to learn continuously. As new data arrives, a large model needs to be

retrained in batch mode in order to update it, using huge additional resources. Our brains adapt

continuously with each new data point. Moreover, today’s machine learning models require

supervised learning with labeled data while your brain is able to rapidly classify similar objects

without labeling. The Thousand Brains Theory neuron model describes how a brain is

continuously updated and how it learns without supervision. In the future we can apply these

techniques to machine learning in order to enable continuous learning and unsupervised

learning.

Another major challenge is that deep learning models are notoriously brittle12. Small changes to

the input or missing information can completely throw off inference. The Thousand Brains

Theory describes how our brains constantly make predictions, and constantly improves by

https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/

16

learning from mistakes in these predictions. The ability to make accurate structured predictions

explains why our brains are so robust. It explains how we are able to effortlessly fill in missing

pieces of a scene, such as the lower half of a person blocked by a car door. The same principle

can be applied to improve the robustness of deep learning models.

Finally, deep learning models have yet to be successfully applied to sensorimotor behavior in

advanced robotics. If we want to create more powerful machine intelligence, we need to be able

to make decisions and implement actions. The Thousand Brains Theory explains how reference

frames provide a framework to extend the success of machine intelligence in static tasks to

sensorimotor tasks in robotics.

CONCLUSION
Since the beginning of the field of AI over fifty years ago, scientists have speculated that the

brain, as the only demonstration of intelligence in the universe, can show the path towards

implementing machine intelligence. Yet, over these many years, and in spite of spectacular

growth in the field of neuroscience, little has been made of this possibility. Instead, the field of AI

has focused on inefficient techniques enabled by vast amounts of compute power and data,

quite different from the neocortex. As these techniques reach their inevitable limitations, turning

to the brain for insights has become not just an alternative, but a necessity, to advance the field.

Today, with a far more complete understanding of the human brain, we now see a clear

roadmap on how to apply these concepts to building efficient, intelligent machines. We propose

a starting point of using sparsity to dramatically improve the performance of deep learning

networks. As we continue to implement more and more of the Thousand Brains Theory in

algorithms, we are confident that we are finally on the path to machine intelligence.

17

REFERENCES

1. Thompson, N., Greenewald K., Lee, K., Manso, G. (2020). The Computational Limits of

Deep Learning. MIT Computer Science and A.I. Lab.

https://arxiv.org/pdf/2007.05558.pdf

2. "AI and Compute: Addendum." Open AI.com Blog. November 7, 2019.

https://openai.com/blog/ai-and-compute/#addendum

3. Hao, K. (2019). “Training a single AI model can emit as much carbon as five cars in their

lifetimes” MIT Technology Review, June 6, 2019.

https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-

emit-as-much-carbon-as-five-cars-in-their-lifetimes/

4. Elert, G. (2001). Power of the Human Brain. Available at

https://hypertextbook.com/facts/2001/JacquelineLing.shtml

5. Strubell, E., Ganesh, A., McCallum, A. (2019). Energy and Policy Considerations for

Deep Learning in NLP. 57th Annual Meeting of the Association for Computational

Linguistics (ACL). Florence, Italy. July 2019. https://arxiv.org/abs/1906.02243

6. Hawkins, J., Lewis, M., Purdy, S., Klukas, M., Ahmad, S. (2019). A Framework for

Intelligence and Cortical Function Based on Grid Cells in the Neocortex. Frontiers in

Neural Circuits 12, 121. https://doi.org/10.3389/fncir.2018.00121

7. Hawkins, et al. Numenta research papers. https://numenta.com/papers

8. Hawkins, J. et al. 2016-2020. Biological and Machine Intelligence. Release 0.4.

Accessed at https://numenta.com/resources/biological-and-machine-intelligence/

9. Ahmad, S., Scheinkman, L. (2019). How Can We Be So Dense? The Benefits of Using

Highly Sparse Representations. https://arxiv.org/abs/1903.11257

10. Cui, Y., Ahmad, S., Hawkins, J. (2017). The HTM Spatial Pooler—A Neocortical

Algorithm for Online Sparse Distributed Coding. Frontiers in Neuroscience, 11.

https://doi.org/10.3389/fncom.2017.00111

11. “How Sparsity Adds Umph to AI Inference.” NVIDIA.com Blog. May 14, 2020.

https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/

12. Su, J., Vargas, D., Kouichi, S. (2019). One pixel attack for fooling deep neural networks.

IEEE Transactions on Evolutionary Computation, Vol.23 , Issue.5 , pp. 828--841.

https://arxiv.org/abs/1710.08864

Note: Xilinx, Google, Alveo, Zynq, Vitis PyTorch, NVIDIA, Tesla, and Ampere are registered trademarks
of their respective owners.

https://arxiv.org/pdf/2007.05558.pdf
https://openai.com/blog/ai-and-compute/#addendum
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://hypertextbook.com/facts/2001/JacquelineLing.shtml
https://arxiv.org/abs/1906.02243
https://doi.org/10.3389/fncir.2018.00121
https://numenta.com/papers
https://numenta.com/resources/biological-and-machine-intelligence/
https://arxiv.org/abs/1903.11257
https://doi.org/10.3389/fncom.2017.00111
https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/
https://arxiv.org/abs/1710.08864

18

APPENDIX
Reproducibility
The performance tests can be reproduced by a third party on their own Alveo U250 board.
Contact sparse@numenta.com if you’re interested in downloading the demonstration code.

Glossary
• High Level Synthesis (HLS): an automatic generation of electronic circuitry from a high-level

algorithmic description (for example in C++).

• Register Transfer Level (RTL): a design abstraction which models a synchronous digital circuit

in terms of the transfer of data between hardware registers (memory or flip-flops), and the logical

operations performed on that data.

• Super Logical Region (SLR): Most of Xilinx FPGA devices in the “Alveo” line consist of multi-

chip-modules comprised of several physical chips. Each of the chips are referred to as an

SLR. It is an important aspect in the design of a system because there is a slight timing

impact in the transition between the SLRs and the number of connections is limited.

• Proximus: A proprietary FPGA integrated development environment that allows the design

of systems at the block level by expressing the overall function as communicating parallel

processes.

• Vitis: Part of the Xilinx FPGA design tool offering, this is the high-level platform which deals

with software components, hardware drivers, high level design entry and HLS. Vitis

translates high level designs (C++) into RTL.

• Vitis AI: Xilinx library-based AI offering for FPGA design which allows the designer to

parameterize a wide range of different AI networks and map them to a subset of available

chips and cards.

• Vivado: Xilinx physical design integrated development environment (IDE) in the Vitis

platform, used to do the mapping of an electronic design to the FPGA chip, using RTL-

synthesis.

Design Flow
1. Using Proximus, a block diagram is developed which consists of communicating

functional parts, in this case the different layers of a neural network (CNN1, CNN2 etc.).

Each block can contain a purely functional description (for example in C++) or contain

more levels of blocks which eventually contain simpler functional descriptions (for

example a multiplication). Functionality is verified at this level and given some

assumptions (e.g. # of cycles for operations), performance can be estimated and trade-

offs can be made at this point in the design.

2. The design is then exported into the Xilinx tool set, where Vitis generates the hardware

drivers and does High Level Synthesis. Circuit simulation can be done at the HLS stage.

mailto:sparse@numenta.com

19

3. Assuming there are no timing problems found, Vivado then does RTL and physical

synthesis, place and route, timing verification and bitsteam generation. Circuit simulation

can be done at the RTL level during this stage.

4. The design is then transferred to the physical FPGA. Proximus then connects to the

FPGA hardware and performs the overall system execution.

Sparse network implementation details
The next several figures walk through the sparse network implementation details.

Figure A. Single sparse GSC network in one SLR, shown in Proximus. The right side of the
figure is a high-level block diagram of the Alveo U250, showing all four SLRs. SLR0 is
highlighted, and the left side of the figure shows the block diagram of a single copy of the GSC
sparse network instance which is implemented in this SLR.

20

Figure B. Multiple sparse GSC networks in one SLR, shown in Proximus. The right side of the
figure is a high-level block diagram of the Alveo U250, showing all four SLRs. The left side of
the figure shows five instances of the sparse GSC network which are implemented in one SLR.
The inputs are distributed into these five networks in round robin fashion using a map reduce
algorithm. Each box in the left side of the diagram contains C++ code implementing the function
of the network layer.

21

Figure C. Multiple sparse GSC networks in one SLR, shown in Vivado, after the design is
exported from Proximus into Vitis, and high-level synthesis has run. Figure C is equivalent to
Figure B, but shown in a different tool view. The dataflow is shown top-down in Proximus
(Figure B) and left-right in Vivado (Figure C). Each box in Figure C contains synthesized RTL
(Register Transfer Level).

22

Figure D. Multiple GSC networks distributed across 4 SLRs, shown in Proximus. The right side
of the figure is a high-level block diagram of the Alveo U250, showing all four SLRs. The left
side of the figure shows the full chip design, with each “gsc_hw” block equivalent to the block
diagram shown in Figure B, representing one SLR for a total of four SLRs. Each “gsc_hw” block
contains 5 copies of the sparse GSC network, with a total of 20 networks implemented on the
chip.

23

Figure E: The same, full design of 5 networks in each of 4 SLRs on Alveo U250, in flattened
(hierarchy removed) view, shown in Proximus.

24

Figure F. This is the entire design (20 network copies distributed over 4 SLRs) shown in Vivado.
The block level diagram shows the 5x4 logical designs with their two-level distribution and map-
reduce logic. In addition, to reduce the dependency on slight timing-differences between
modules, each one has a FIFO module on its input as well as output.

25

Figure G. Pictured here is the physical
layout of 5 instances per SLR, 20 in
total, on the Alveo U250.

The parts in the design are built
automatically by Vitis-HLS, which
translates C++ from Proximus into RTL.
Then Vivado synthesizes RTL into
FPGA gate level and places and routes
the design on the FPGA.

In this Vivado physical view (which is
the result of the “place and route”
process) the 4 SLRs can be seen
clearly stacked vertically. You can also
see the “static region” which is the
space reserved for the host interface
(PCI-e 3.0x16) as well as the DDR4
interfaces to the 4 parallel memory
DIMM available on the board. The logic
is smeared as a large number of tiny
pieces (LUT, DSP, BRAM, URAM and
routing) and depicted in light blue.

	PERFORMANCE PROBLEMS IN DEEP LEARNING
	NEUROSCIENCE SOLUTIONS
	The Efficient Brain
	Sparse Representations

	TECHNOLOGY DESCRIPTION
	Choosing the dataset
	Creating the sparse network
	Choosing a hardware platform
	Implementing the networks
	Running the performance tests

	DETAILED RESULTS
	Throughput
	Power usage
	Resource utilization
	Comparison with GPUs
	Summary of results

	FUTURE WORK
	CONCLUSION
	REFERENCES
	APPENDIX
	Reproducibility
	Glossary
	Design Flow
	Sparse network implementation details

