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EXECUTIVE SUMMARY 
Deep learning networks today have accomplished a great deal but are hitting bottlenecks as 

they scale to more complex tasks and bigger models. Researchers attempt to break through the 

bottleneck by adding more compute power and training data. These enormous models consume 

vast amounts of power, limiting scalability and creating environmental damage. We need a new 

algorithmic approach to achieve breakthroughs in performance and scalability. 

 

Although deep learning techniques use neuroscience-like terminology, in fact they operate very 

differently than the human brain. Unlike deep learning networks, the brain is highly efficient, 

requiring a mere 20 Watts to operate, less power than a lightbulb. At Numenta, we believe that 

by studying the brain and understanding what makes it so efficient, we can create new 

algorithms that approach the efficiency of the brain. 

 

How is the brain so efficient? There are many reasons, but at its foundation is the notion of 

sparsity. The brain stores and processes information as sparse representations. At any given 

time, only a small percentage of neurons in the brain are active. This sparsity may vary from 

less than one percent to a few percent of neurons being active, but it is always sparse. In 

addition, unlike deep learning networks, the connectivity between neurons in the brain is also 

highly sparse. In this whitepaper, we demonstrate the application of Numenta’s brain-inspired, 

sparse algorithms to machine learning. Using these algorithms on Xilinx Field Programmable 

Gate Array (FPGA) chips and the Google Speech Commands (GSC) dataset, we show the 

substantial benefits of leveraging sparsity in order to scale deep learning models.  

 

Sparse networks perform inference 50 times faster than dense 

networks, with competitive accuracy.  

 

This dramatic speed improvement could provide great benefits, enabling: 

● Implementation of far larger networks using the same resource  

● Implementation of more copies of networks on the same resource 

● Implementation of sparse networks on edge platforms with limited resources 

where dense networks do not fit 

● Massive energy savings and lower costs due to scaling efficiencies 

 

This technology demonstration is the beginning of a robust roadmap based on our deep 

neuroscience research. Not only can we achieve even faster speed-ups on the GSC dataset by 

adding more sparse networks on chip, we also can apply these sparse techniques to other 

FPGA and other hardware platforms and more complex datasets like image recognition. 

Further, we can apply sparse networks to training tasks, which could lead to reduced training 

time and smaller training sets. Moreover, we plan to implement continual learning, which offers 

the promise of substantial benefits over batch training. Beyond sparsity, as we add more 

elements of our neocortical model, we expect additional benefits in unsupervised learning, 

robustness and sensorimotor behavior.   
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PERFORMANCE PROBLEMS IN DEEP LEARNING 
Over the last decade, deep learning networks have accomplished a great deal but are hitting 

bottlenecks as they scale to more complex applications. Researchers attempt to break through 

the bottleneck by creating ever larger models, adding more and more compute power, and more 

and more training data.1,2 Additionally, these enormous models consume vast amounts of 

power, limiting scalability and creating environmental damage.3 We believe that a new 

algorithmic approach is required to achieve breakthroughs in performance and scalability. 

 

In contrast to today’s deep learning models the brain is amazingly efficient, and provides a 

roadmap as to how to break through these scaling barriers. By studying the brain and 

understanding what makes it so efficient, we can create new algorithms based on neuroscience 

principles.  

 

At Numenta we have done exactly that for over 15 years. Our focus is the neocortex, which is 

the largest brain region, and the area primarily responsible for our intelligence. The foundation 

of neocortical efficiency is that the brain stores and processes information as sparse 

representations. In our past work we have described some of the benefits of sparsity to areas 

such as robustness and continuous learning. In this whitepaper we show that by applying the 

principles of sparsity to deep learning, we can lay the groundwork for breakthrough performance 

acceleration. By implementing Numenta’s sparse algorithms on Xilinx FPGAs we demonstrate 

these principles on inference tasks using the Google Speech Commands (GSC) dataset.  

 

Our results show a speed-up of 50x with competitive accuracy. 

 

This technology demonstration is the beginning of a robust roadmap based on our deep 

neuroscience research. Not only can we achieve performance improvements on inference, the 

principles of sparsity can also lead to dramatically improved training times. Going beyond 

sparsity, as we incorporate more elements of our cortical model, we can shrink the size of 

training sets and reduce the need for large, manually labeled datasets. Moreover, we can 

enable continual learning similar to humans, which will eliminate the need to constantly retrain 

the model on the entire training set (batch training). Taken together, these techniques will 

eventually provide several orders of magnitude improvements in scaling. We also expect to see 

additional benefits in generalization, robustness, and sensorimotor behavior.  
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NEUROSCIENCE SOLUTIONS 
The Efficient Brain  
It is easy to intuit that the human brain solves problems much more efficiently than a deep 

learning network. Brains are estimated to require a mere 20 watts of power to perform a wide 

range of tasks, from reasoning to language, processing visual and auditory inputs and executing 

complex behaviors.4 In contrast, today’s deep learning networks are energy hogs and often 

require large amounts of training running on many servers for many days. For example, a recent 

study from University of Massachusetts, Amherst, showed that a single large Transformer 

model (a natural language processing model) consumed 656,000 Kwh at a cost of $1M- $3M 

just to train the network.5 

 

How is the brain so intelligent with such amazing efficiency? One reason is that most of the 

neocortex is sparse. It stores and processes information in the context of extremely sparse 

neural activity and sparse connectivity. Sparsity is foundational to the comprehensive theory of 

cortical function we have developed called the Thousand Brains Theory of Intelligence6. It is 

beyond the scope of this paper to describe the theory in detail, but it is extensively documented 

in peer-reviewed papers7. We discuss applying some additional aspects of the theory in the 

Future Work section. 

 

Sparse Representations  

One of the most remarkable observations about the neocortex is that no matter where you look, 

the activity of neurons is sparse; only a small percentage of neurons are sending signals at any 

point in time. The activity might vary from less than one percent to several percent, but it is 

always extremely sparse. In addition, unlike deep learning networks, the connectivity between 

neurons in the brain is also sparse. We have shown through mathematical analysis and 

simulation that sparsity enables efficient use of resource, generalization and robustness. For 

more details on the nature of sparsity, see Chapter 3 of our digital book Biological and Machine 

Intelligence (BAMI)8 and our paper, “How Can We Be So Dense? The Benefits of Using Highly 

Sparse Representations.”9  

 

By contrast, traditional deep learning uses dense representations, which requires many more 

computations. For example, in performing matrix multiplication for a dense network, each row 

vector must be multiplied by each column vector. In a sparse network most of the matrix values 

are zero. When sparse rows and columns are multiplied together, a large fraction of the 

products can be eliminated. The challenge is to train networks such that you can have high 

levels of sparsity without sacrificing accuracy by using a hardware implementation which can 

efficiently compute the non-zero products. 

 

  

https://numenta.com/neuroscience-research/research-publications/papers/a-framework-for-intelligence-and-cortical-function-based-on-grid-cells-in-the-neocortex/
https://numenta.com/neuroscience-research/research-publications/papers/
https://numenta.com/assets/pdf/biological-and-machine-intelligence/BaMI-SDR.pdf
https://numenta.com/resources/biological-and-machine-intelligence/
https://numenta.com/resources/biological-and-machine-intelligence/
https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257
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TECHNOLOGY DESCRIPTION 
To validate the efficiency of sparse networks, we compared inference performance between 

dense and sparse deep learning networks. In order to do so, we went through the following 

steps: 

 

1. Choose a dataset for the comparison. 

2. Create a sparse neural network for the dataset. 

3. Choose a hardware platform to run the comparison tests. 

4. Implement both the sparse and dense networks on the chosen hardware platform. 

5. Run performance tests on both networks. 

6. Compare the results. 

 

Choosing the dataset 
We chose the Google Speech Commands (GSC) dataset, which consists of 65,000 one-second 

long utterances of keywords spoken by thousands of individuals. The task is to recognize the 

word being spoken from the audio signal. This task is representative of modern embedded 

smart home applications that respond to speech commands. Standard convolutional networks 

on this dataset achieve accuracies around 92% for 10 categories, whereas more complex 

ResNet architectures achieve accuracies around 96-97%. 

 
 

Creating the sparse network 
We created the sparse network with highly sparse weights and activations, like in the neocortex. 

To achieve this result, we made two modifications to the standard deep learning layer (see also 

Figure 1): 

 
1. We initialized the weights using a sparse random mask, so that only a fraction of the 

weights contain non-zero values.  

2. We created sparse activations by maintaining only the top-k active units of each 

layer; the rest are set to zero. This k-winner step is non-linear and can be thought of 

as a substitute for the ReLU function. 

 
The above formulation is an extension of our previous work on the HTM Spatial Pooler10, 

adapted for neural networks trained with back-propagation.  

https://numenta.com/neuroscience-research/research-publications/papers/htm-spatial-pooler-neocortical-algorithm-for-online-sparse-distributed-coding/
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Our dense GSC network is a standard convolutional network with two convolutional layers, a 

linear hidden layer plus an output layer. As is standard practice in speech processing, the raw 

audio signals are converted to 32-band Mel spectograms before being fed to the network. Our 

sparse GSC network is identical to the dense network except it contains sparse weights and the 

k-winner take all function as described above. The accuracies of our sparse and dense 

networks are in the range of 96.4% to 96.9%. The sparse network contains 127,696 non-zero 

weights compared to 2,522,128 weights in the dense network, or about 95% sparse. The 

activations in the sparse network range from 88% to 90% sparsity, depending on the layer. 

 

The sparsity levels in our networks are much higher than what is commonly seen in the deep 

learning literature. In such high sparsity regimes, it is possible for a small subset of the neurons 

to dominate and become active for a large percentage of the patterns. In this situation the 

network is limited to a small fraction of the possible patterns. To address the issue, we employ a 

boosting function during training, which favors units that are inactive.  

 

Details of our sparse network, other implementation issues, and our use of the GSC and other 

datasets are discussed in Numenta’s research paper, “How Can We Be So Dense? The 

Benefits of Using Highly Sparse Representations.”9 

 

For our hardware implementation, we also apply a “block sparsity” constraint to the weights of 

our sparse network. To create a block-sparse matrix, the weight matrix is structured in a way 

where a large matrix is divided into smaller matrices with most blocks containing only zero 

values and a few blocks containing only non-zero values. This structure aids in compression 

and efficiently using the on-chip processing logic. The weights are quantized to 8 bits before 

running on the FPGA. 

 
Figure 1: Standard dense layer vs our sparse layer. Our sparse layer contains both sparse 
weights and sparse activations. 

https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257
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Choosing a hardware platform 
In sparse systems a majority of the computation results are zero (since a majority of the inputs 

are also zero). If the machine knows in advance the location of the zeros, it can skip many 

useless operations. In addition only the non-zero weights need to be stored, which results in a 

much smaller memory footprint. In principle this idea is simple but in practice it is challenging to 

find hardware architectures that can exploit both these properties of sparse systems. 

 

We chose an FPGA (Field Programmable Gate Array) as the hardware platform to run the 

performance tests because of the flexibility it provides in handling sparse data efficiently. 

FPGAs can do as many arbitrary functions in parallel as it has logical elements (thousands to 

several million). When processing sparse data, an FPGA can be programmed to ignore zeros 

and only compute non-zero values, in addition to computing functions such as k-winner. It is 

currently not possible to parallelize these efficiently in a GPU or CPU. In addition, random 

access to memory is far more granular and efficient on an FPGA, enabling FPGA 

implementations to efficiently handle the unstructured access patterns in sparse networks. This 

ability to program the FPGA in a flexible manner allows it to process sparse data orders of 

magnitude faster and much more energy-efficient than a CPU or GPU. 

 

Overall there are two main reasons why sparse networks are more efficient than dense 

networks on an FPGA platform: 

 
● Fewer computations because the logic on chip can skip zeros and enables computations 

with non-zero elements to be performed efficiently 

● Smaller memory footprint because only non-zero elements are stored, enabling the chip 

to run more networks simultaneously 

 
Note that these two reasons have a multiplicative effect when considering overall system 

throughput. For example, if a sparse network is twice as fast as the dense network, and you can 

fit three times as many networks on the chip, the sparse system will process six times as many 

inputs per second as the dense version. Depending on the achievable sparsity of the network, 

these two factors contribute to a net performance improvement that can be several orders of 

magnitude higher. 

 

For our technology demonstration, we chose three off-the-shelf Xilinx FPGAs and Platforms: the 

Alveo™ U250, the Zynq™ UltraScale+ ZCU104, and the Zynq™ UltraScale+ ZU3EG. The 

Alveo U250 is a powerful platform designed for datacenters. The Zynq class of FPGAs are 

much smaller and designed for embedded applications. Table 1 shows the relative capabilities 

of the three FPGA platforms. As we show later, our sparse network is able to run efficiently on 

even the smallest of these platforms (unlike the dense network). 
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Note that although we feel FPGAs are an ideal platform for this approach, we also believe that 

current generation CPUs and GPUs would achieve benefits from sparsity, just not as dramatic. 

In the future, we propose exciting architecture enhancements to CPUs and GPUs that would 

enable greater use of sparsity for substantial performance gains.   

 

Implementing the networks 
We ran the dense and sparse networks on the above Xilinx FPGA platforms. We also used 

FPGA design tools for programming, block diagram, functional testing, regression and overall 

integration.  

 

We implemented the dense GSC network with the Xilinx software “Vitis AI,” which is a highly 

optimized solution for deploying deep learning networks on the Xilinx chips. After specifying the 

parameters and weights, the software generates a complete FPGA design and the required 

software “drivers” at the OS level. 

 

We implemented the sparse network using a tool called Proximus (see Appendix for details). 

The sparse GSC network implementation is made up of sparse convolutional layers, sparse 

linear layers, k-winner-take-all modules, plus input/output (host interface) modules. Since each 

sparse network instance is small compared to a dense network instance, multiple sparse GSC 

network instances can fit in one FPGA. In the FPGA implementation described below, using an 

Alveo U250 board, up to five sparse GSC networks fit in one “Super Logic Region” (SLR). There 

are four SLRs on an Alveo U250, which means there are 20 sparse network instances on the 

full Alveo board, compared to four total dense network instances (one per SLR). 

 

For more information on implementation details, see the Appendix.  

 
  

FPGA platform System logic cells  Internal 

Memory  

DSP slices System power 

Alveo U250 1,728,000 54MB 12,288 225W 

Zynq™ UltraScale+ ZCU104 504,000 4.75MB 1,728 60W 

Zynq™ UltraScale+ ZU3EG 154,000 0.95MB 360 24W 

 
Table 1: This table lists the relative capabilities of the three Xilinx FPGA platforms. 



 

  
 

10 

Running the performance tests 
We ran the performance tests on each of the FPGA platforms, installed in a server. The dense 

network and sparse network test run on the same card, sequentially, by downloading the 

selected network into the card and then feeding in input data. For the purposes of this test, the 

input data is a repeating sequence of 50,000 pre-processed audio samples (audio sample 

processing is not part of these tests). 

DETAILED RESULTS 
In this section we describe the measured performance of dense vs. sparse networks on the 

various platforms. For sparse networks we show a few different configurations where we vary 

the number of network copies that are placed on the chip. We compare performance using three 

different metrics: throughput, power usage, and resource utilization.  

 

Throughput 
Our throughput metric measures the total number of inputs processed per second on the entire 

chip, specifically the number of words processed per second. Table 2 shows the throughput on 

each platform for a variety of dense and sparse configurations. (Since some configurations can 

have multiple networks on chip, we show single network throughput as well as overall 

throughput numbers.)  

 

FPGA 
platform 

Network 
type 

Throughput 
per network, 
words/sec 

Speedup 
over 
dense  

Number 
of 
networks 
on chip 

Full chip 
throughput 
(words/sec) 

Full chip 
speedup 

Alveo U250  Dense 3,049 - 4 12,195 - 

Alveo U250 Sparse v1 35,714 11.71 1 35,714 2.93 

Alveo U250 Sparse v2 35,088 11.51 5 175,439 14.39 

Alveo U250 Sparse v3 31,250 10.25 20 625,000 51.25 

       

ZCU104 Dense 6,410 - 1 6,410 - 

ZCU104 Sparse v1 27,777 4.33 1 27,777 4.33 

ZCU104 Sparse v2 26,667 4.16 3 80,000 12.48 

       

ZU3EG Dense 0 - 0 0 - 

ZU3EG Sparse 21,053 Infinite 1 21,053 Infinite 

 
Table 2: This table shows the throughput, measured as the number of speech words 
processed per second, for dense and sparse networks on three different platforms for a variety 
of configurations. The throughput of the 20 network sparse configuration on the Alveo U250 is 
51.25 times faster than the fastest dense configuration. 
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As can be seen in the right hand columns, the best sparse network configuration (with 20 

network copies on an Alveo U250) can process data at 625,000 words/second, more than 50 

times faster than the dense implementation on that platform. On the smaller Zynq ZCU104, the 

sparse configuration is over 12 times faster than the dense configuration. The overall system 

speedup is due in part to the speed of a single sparse network combined with the fact that we 

can fit more sparse networks on each chip. 

 

On a per network basis, sparse networks are also significantly faster than dense networks on all 

platforms. On the Alveo U250 the sparse networks are more than 10 times faster than dense 

networks. On the ZCU104, a single sparse network is more than 4 times faster than a single 

dense network. Note that the per network speed drops by about 10% as we pack more 

networks on chip (from 35,714 words/sec to 31,250 words/sec on the Alveo U250). This effect is 

likely due to communication bottlenecks, since the amount of data that has to be transferred per 

second grows with the number of networks running in parallel. Still, the gain in overall 

throughput is far more than the drop in each network’s speed. 

 

The small ZU3EG FPGA is an extremely interesting case in its own right. The dense GSC 

network cannot fit on that system. The sparse network is significantly smaller and thus we can fit 

a single network on that platform (see the Resource utilization section below). Interestingly, the 

throughput of that single sparse network on the small chip is 1.7 times faster than the total 

throughput of four dense networks running on the powerful Alveo U250 (21,053 words/sec vs 

12,194 words/sec). This result opens up new product categories where ultra small, energy 

efficient, embedded platforms can run deep learning based applications without compromise. 

 

Power usage 
Power utilization is rapidly becoming an important criterion in measuring the efficiency of deep 

learning systems. We use the metric words/second/watt to evaluate power usage. Table 3 

shows the numbers for dense vs. sparse networks on the three platforms.  

 

Different chips make different power/performance tradeoffs, and the most efficient dense 

configuration actually runs on the ZCU104, at about 107 words/second/watt. The relative 

efficiency column on the right measures the power improvement of each implementation relative 

to that configuration. As can be seen, the 20 network sparse configuration on the Alveo U250 is 

2600% more power efficient than the most efficient dense configuration. 
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Note that measuring exact power usage is tricky. In Table 3 we use the max wattage 

measurement of the development board as our power consumption. A specific product using a 

custom board should get significantly better absolute power usage across the board, perhaps by 

as much as a factor of 4. Nevertheless, we expect the general trends and the relative power 

efficiency of sparse networks to largely reflect the results shown in Table 3. It is indisputable 

that sparse networks are far more efficient than dense networks. 

 

 

 
 

  

FPGA 
platform 

System 
power 

Network 
type 

Number of 
networks 

Words/sec/ 
watt 

Relative 
efficiency 

Alveo U250  225 Dense 4 54 50.7% 

Alveo U250 225 Sparse 1 159 148.6% 

Alveo U250 225 Sparse 5 780 729.9% 

Alveo U250 225 Sparse 20 2,778 2600.1% 

      

ZCU104 60 Dense 1 107 100.0% 

ZCU104 60 Sparse 1 463 433.3% 

ZCU104 60 Sparse 3 1,333 1248.0%  

      

ZU3EG 24 Dense 0 0 0 

ZU3EG 24 Sparse 1 877 821.1% 

 
Table 3: Overall power usage, measured in words processed per second per watt, for 
each configuration. The most efficient dense configuration runs on the ZCU104 (107 
words/sec/watt). The relative efficiency column, measured against that 
implementation, shows that the sparse networks are far more efficient than the most 
efficient dense configuration.  
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Resource utilization 
FPGA platforms have a diverse set of compute and memory components, each with different 

but overlapping capabilities. Optimizing any implementation often involves balancing between 

these various resources. Table 4 shows the percentage utilization of these resources for various 

sparse network configurations (we did not have access to the dense network utilization 

numbers). 

 

 

As can be seen from the first row of the table, each sparse network takes up a tiny percentage 

of the overall resources on an Alveo U250. This result means that you can have several 

networks running in parallel, while still leaving significant room for the rest of the application. 

Sparse networks offer much more flexibility than dense networks in achieving high throughput 

while still allowing room for other complex application code. 

 

It is worth noting that 20 networks do not consume the whole chip. On such large platforms, the 

place and route process gets more challenging as resource utilization gets high. Despite that, by 

appropriately rebalancing resources, we estimate that it is possible to pack another 5-10 sparse 

networks on the Alveo U250, leading to even higher throughput than reported in this paper. 

 

  

FPGA 
platform 

Network 
type 

Network 
copies 

LUT usage BRAM 
usage 

URAM 
usage 

DSP 
 

Alveo U250 Sparse 1 1.64% 1.72% 2.66% 3.56% 

Alveo U250 Sparse 5 7.83% 11.06% 13.28% 17.79% 

Alveo U250 Sparse 20 32.10% 42.21% 53.13% 71.22% 

ZCU104 Sparse 1 13.21% 29.33% 35.42% 25.29% 

ZCU104 Sparse 3 34.15% 78.85% 59.38% 75.87% 

ZU3EG Sparse 1 49% 80% NA 94% 

 
Table 4: FPGA resource utilization for a variety of sparse configurations.  
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Comparison with GPUs 
Our primary goal in this whitepaper is to highlight the performance advantages of sparse 

representations vs. dense representations. To do so, we held the platform constant, 

implementing both sparse and dense networks on the same FPGA platforms. We did not 

implement an optimized sparse network on GPUs. In this section we provide some approximate 

performance numbers of the dense network on two GPU systems to get some rough sense of 

the relative speeds. 

We used PyTorch to run the dense network on two popular NVIDIA platforms: the Tesla™ K80 

and the Tesla™ V100. Table 5 shows the throughput of the dense network on these platforms 

for various batch sizes (GPU performance is optimized for high batch sizes). Overall, the dense 

network has a consistently higher throughput on GPUs than does the dense network on the 

Alveo. However, our sparse networks are significantly faster than any of the dense 

implementations, FPGA or GPU.  Although it is difficult to compare across widely different 

architectures, there is no doubt that an FPGA running a sparse network as described here will 

have a substantial price performance advantage over a GPU running a dense network. 

Note that these numbers should only be used to get a very rough sense of comparative 

performance. There are numerous factors that come into play, such as transistor counts, price 

points, chip size, and manufacturing density. In addition to the differences between chips, the 

software implementations are very different. The PyTorch implementation uses 32 bit floating 

point numbers, whereas the Alveo implementation uses 8 bit integer numbers. It is quite 

possible that the GPU throughput of the dense network could be increased with a more 

optimized implementation. Nevertheless, the large gap between the sparse and dense network 

throughputs shows the clear advantages of our optimized sparse implementations. 

 

Platform Network type Batch size Overall 
throughput 

Alveo U250  Dense 500 12,195 

Alveo U250 Sparse N/A (streaming) 625,000 

Tesla K80 Dense 256 16,024 

Tesla K80 Dense 1024 17,710 

Tesla K80 Dense 8192 20,118 

Tesla V100 Dense 256 45,450 

Tesla V100 Dense 1024 61,638 

Tesla V100 Dense 8192 54,301 

 
Table 5: Throughput for dense networks on two GPU platforms for different batch 
sizes. Our sparse networks significantly outperform all dense implementations. 
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Recently NVIDIA has started to invest more heavily on sparsity. On their Ampere architecture 

they demonstrated a 50% to 100% improvement over dense networks11. Our networks are 

much sparser than the ones they showed and our networks incorporate both activation sparsity 

as well as weight sparsity. Given the promise of such highly sparse networks, it is possible that 

additional improvements to the underlying GPU architecture could eventually lead to much 

larger benefits. 

 

Summary of results 
As can be seen throughout the above discussion, sparse networks offer significant performance 

benefits over dense networks. An individual sparse network is faster than a comparable dense 

network. Since sparse networks are much smaller than dense networks, more copies can be 

implemented on the same chip, giving even more throughput speedup. Sparse networks are far 

more energy efficient, and our optimized sparse implementation is significantly faster than 

dense networks running on more powerful chips (both FPGA and GPU). 

 

FUTURE WORK 
This technology demonstration validates that sparsity will be a key factor in scaling deep 

learning networks. We are working with strategic partners to commercialize this technology. 

 

Future work will proceed in several directions. First, we believe there is additional opportunity 

within this dataset for additional optimizations, thereby enhancing the results further. Second, 

we are in the process of applying these techniques to more complex networks (such as ResNet 

and Transformer networks), more challenging datasets, and on additional hardware platforms. 

Third, this whitepaper has focused on inference tasks, but the same principles apply to training. 

We plan to create a technology demonstration to validate that sparsity can significantly improve 

the efficiency of training deep learning networks.  

 

Sparsity is foundational to the Thousand Brains Theory, but it is only the beginning. Deep 

learning models have had significant challenges beyond performance that can be addressed by 

implementing more of the neocortical theory. To begin with, a major challenge faced by these 

networks is an inability to learn continuously. As new data arrives, a large model needs to be 

retrained in batch mode in order to update it, using huge additional resources. Our brains adapt 

continuously with each new data point. Moreover, today’s machine learning models require 

supervised learning with labeled data while your brain is able to rapidly classify similar objects 

without labeling. The Thousand Brains Theory neuron model describes how a brain is 

continuously updated and how it learns without supervision. In the future we can apply these 

techniques to machine learning in order to enable continuous learning and unsupervised 

learning. 

 

Another major challenge is that deep learning models are notoriously brittle12. Small changes to 

the input or missing information can completely throw off inference. The Thousand Brains 

Theory describes how our brains constantly make predictions, and constantly improves by 

https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/
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learning from mistakes in these predictions. The ability to make accurate structured predictions 

explains why our brains are so robust. It explains how we are able to effortlessly fill in missing 

pieces of a scene, such as the lower half of a person blocked by a car door. The same principle 

can be applied to improve the robustness of deep learning models. 

 

Finally, deep learning models have yet to be successfully applied to sensorimotor behavior in 

advanced robotics. If we want to create more powerful machine intelligence, we need to be able 

to make decisions and implement actions. The Thousand Brains Theory explains how reference 

frames provide a framework to extend the success of machine intelligence in static tasks to 

sensorimotor tasks in robotics.  

CONCLUSION 
Since the beginning of the field of AI over fifty years ago, scientists have speculated that the 

brain, as the only demonstration of intelligence in the universe, can show the path towards 

implementing machine intelligence. Yet, over these many years, and in spite of spectacular 

growth in the field of neuroscience, little has been made of this possibility. Instead, the field of AI 

has focused on inefficient techniques enabled by vast amounts of compute power and data, 

quite different from the neocortex. As these techniques reach their inevitable limitations, turning 

to the brain for insights has become not just an alternative, but a necessity, to advance the field. 

Today, with a far more complete understanding of the human brain, we now see a clear 

roadmap on how to apply these concepts to building efficient, intelligent machines. We propose 

a starting point of using sparsity to dramatically improve the performance of deep learning 

networks. As we continue to implement more and more of the Thousand Brains Theory in 

algorithms, we are confident that we are finally on the path to machine intelligence.  
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APPENDIX 
Reproducibility 
The performance tests can be reproduced by a third party on their own Alveo U250 board. 
Contact sparse@numenta.com if you’re interested in downloading the demonstration code.  

 

Glossary 
• High Level Synthesis (HLS): an automatic generation of electronic circuitry from a high-level 

algorithmic description (for example in C++). 

• Register Transfer Level (RTL):  a design abstraction which models a synchronous digital circuit 

in terms of the transfer of data between hardware registers (memory or flip-flops), and the logical 

operations performed on that data. 

• Super Logical Region (SLR): Most of Xilinx FPGA devices in the “Alveo” line consist of multi-

chip-modules comprised of several physical chips. Each of the chips are referred to as an 

SLR. It is an important aspect in the design of a system because there is a slight timing 

impact in the transition between the SLRs and the number of connections is limited. 

• Proximus: A proprietary FPGA integrated development environment that allows the design 

of systems at the block level by expressing the overall function as communicating parallel 

processes.  

• Vitis: Part of the Xilinx FPGA design tool offering, this is the high-level platform which deals 

with software components, hardware drivers, high level design entry and HLS. Vitis 

translates high level designs (C++) into RTL. 

• Vitis AI: Xilinx library-based AI offering for FPGA design which allows the designer to 

parameterize a wide range of different AI networks and map them to a subset of available 

chips and cards. 

• Vivado: Xilinx physical design integrated development environment (IDE) in the Vitis 

platform, used to do the mapping of an electronic design to the FPGA chip, using RTL-

synthesis. 

 
 

Design Flow 
1.  Using Proximus, a block diagram is developed which consists of communicating 

functional parts, in this case the different layers of a neural network (CNN1, CNN2 etc.). 

Each block can contain a purely functional description (for example in C++) or contain 

more levels of blocks which eventually contain simpler functional descriptions (for 

example a multiplication). Functionality is verified at this level and given some 

assumptions (e.g. # of cycles for operations), performance can be estimated and trade-

offs can be made at this point in the design.  

2. The design is then exported into the Xilinx tool set, where Vitis generates the hardware 

drivers and does High Level Synthesis. Circuit simulation can be done at the HLS stage. 

mailto:sparse@numenta.com
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3. Assuming there are no timing problems found, Vivado then does RTL and physical 

synthesis, place and route, timing verification and bitsteam generation. Circuit simulation 

can be done at the RTL level during this stage. 

4. The design is then transferred to the physical FPGA. Proximus then connects to the 

FPGA hardware and performs the overall system execution. 

 

 

Sparse network implementation details 
The next several figures walk through the sparse network implementation details.  
 
 
 

 
 
 
Figure A. Single sparse GSC network in one SLR, shown in Proximus. The right side of the 
figure is a high-level block diagram of the Alveo U250, showing all four SLRs. SLR0 is 
highlighted, and the left side of the figure shows the block diagram of a single copy of the GSC 
sparse network instance which is implemented in this SLR. 
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Figure B. Multiple sparse GSC networks in one SLR, shown in Proximus. The right side of the 
figure is a high-level block diagram of the Alveo U250, showing all four SLRs. The left side of 
the figure shows five instances of the sparse GSC network which are implemented in one SLR. 
The inputs are distributed into these five networks in round robin fashion using a map reduce 
algorithm. Each box in the left side of the diagram contains C++ code implementing the function 
of the network layer. 
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Figure C. Multiple sparse GSC networks in one SLR, shown in Vivado, after the design is 
exported from Proximus into Vitis, and high-level synthesis has run.  Figure C is equivalent to 
Figure B, but shown in a different tool view. The dataflow is shown top-down in Proximus 
(Figure B) and left-right in Vivado (Figure C). Each box in Figure C contains synthesized RTL 
(Register Transfer Level). 
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Figure D. Multiple GSC networks distributed across 4 SLRs, shown in Proximus. The right side 
of the figure is a high-level block diagram of the Alveo U250, showing all four SLRs. The left 
side of the figure shows the full chip design, with each “gsc_hw” block equivalent to the block 
diagram shown in Figure B, representing one SLR for a total of four SLRs. Each “gsc_hw” block 
contains 5 copies of the sparse GSC network, with a total of 20 networks implemented on the 
chip. 
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Figure E: The same, full design of 5 networks in each of 4 SLRs on Alveo U250, in flattened 
(hierarchy removed) view, shown in Proximus.  



 

  
 

24 

 

 
 
 
 
 
Figure F. This is the entire design (20 network copies distributed over 4 SLRs) shown in Vivado. 
The block level diagram shows the 5x4 logical designs with their two-level distribution and map-
reduce logic. In addition, to reduce the dependency on slight timing-differences between 
modules, each one has a FIFO module on its input as well as output.   
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Figure G. Pictured here is the physical 
layout of 5 instances per SLR, 20 in 
total, on the Alveo U250. 
 
The parts in the design are built 
automatically by Vitis-HLS, which 
translates C++ from Proximus into RTL. 
Then Vivado synthesizes RTL into 
FPGA gate level and places and routes 
the design on the FPGA. 
 
In this Vivado physical view (which is 
the result of the “place and route” 
process) the 4 SLRs can be seen 
clearly stacked vertically. You can also 
see the “static region” which is the 
space reserved for the host interface 
(PCI-e 3.0x16) as well as the DDR4 
interfaces to the 4 parallel memory 
DIMM available on the board.  The logic 
is smeared as a large number of tiny 
pieces (LUT, DSP, BRAM, URAM and 
routing) and depicted in light blue.  
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