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SUMMARY ACTIVE DENDRITES ENABLE A POWERFUL SEQUENCE MEMORY
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- Dendritic NMDA spikes cause cells to fire faster than they would otherwise.

- Fast local inhibitory networks (e.g. minicolumns) inhibit cells that don't fire early.
- Sparser activations during a predictable sensory stream.

- For predictable natural stimuli, dendritic spikes will be more frequent than APs.
(Vinje & Gallant, 2002; Smith et al, 2013; Wilmes et al, 2016, Moore et al, 2017)
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Branch specific plasticity
- Strong LTP in dendritic branch when NMDA spike followed by back action potential (bAP).
- Weak LTP (without NMDA spike) if synapse cluster becomes active followed by a bAP.
- Weak LTD when an NMDA spike is not followed by an action potential/bAP.

(Holthoff et al, 2004, Losonczy et al, 2008; Yang et al, 2014; Cichon & Gang, 2015)
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as context for predictions
- Sparsely active cells represent
sensory features at specific locations

Excellent performance
- HTM sequence memory on par
with best deep learning system
- Network responds far better than
those systems when statistics
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statistics due to its continuous unsupervised
Hebbian learning rule

Inferring combined sensorimotor and temporal sequence streams

20% increase in weekday night traffic
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