
Experimental support for active dendrites:
 Poirazi et al., 2003; Palmer et al., 2014; Major, Larkum and Schiller 2013

Sequence learning is ubiquitous in cortex

 

What is neural mechanism for sequence learning?

HTM sequence memory:
1. Neurons learn to recognize hundreds of patterns using 

active dendrites.

2. Recognition of patterns act as predictions by depolarizing 
the cell without generating an immediate action potential.

3. A network of neurons with active dendrites forms a 
powerful sequence memory.

Active Dendrites 
 
Pattern detectors 
Each cell can recognize 
100’s of unique patterns 

Feedforward 
100’s of synapses 
“Classic” receptive field 

Context 
1,000’s of synapses 
Depolarize neuron 
“Predicted state” 

 

Pyramidal neuron HTM neuron 

Proximal dendrite can recognize a 
feedforward input pattern and activate cell

4. Sparse representations lead to highly robust recognition.

HTM neuron model:

Each distal dendrite segment 
can recognize a particular pattern 
and cause dendritic spike 

5. Agrees well with experimental evidence.
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HTM network model for sequence learning

Activation rules
 Select the top 2% of columns with strongest inputs on proximal dendrite as active columns

  
If any cell in an active column is predicted, only the predicted cells fire

  If no cell in an active column is predicted, all cells in the column fire

:
 If a depolarized cell becomes active subsequently, its active dendritic segment will be reinforced
 If a depolarized cell does not become active, we apply a small decay to active segments of that cell
 If no cell in an active column is predicted, the cell with the most activated segment gets reinforced

Learning and activation rules

(Hawkins and Ahmad, 2016)

Unsupervised Hebbian-like learning rules

Detected pattern on distal dendrite causes cell to be depolarized (predicted)
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Same columns, 
but only one cell active per column after learning. 
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Learns complex high-order sequences
e.g. ABCD vs XBCY
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Example population responses

Naturalistic Movie

HTM sequence memory predicts structured sparser activity for learned sequence

Data: Sparser activity over repeated presentations
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Data: Presence of high-order cell assemblies

Cell assemblies are locked to stimulus

Testable predictions and experimental validation

HTM sequence memory predicts presence of high-order cell assemblies

Data: sparse activity is a subset of activity before learning

(Stirman et al., 2016)

(In collaboration with Spencer Smith and Yiyi Yu, 
UNC, Chapel Hill)
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  Data sources: http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

Task: predict taxi passenger count in NYC
HTM has comparable performance to state-of-the-art algorithms

HTM exhibits high fault tolerance to neuron death
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HTM
LSTM HTM is fault tolerant due to properties of 

sparse distributed representations  
(Hawkins & Ahmad 2016).

In contrast, LSTM and most other artificial 
neural networks are sensitive to loss of 
neurons or synapses (Piuri 2001).
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HTM adapts quickly to changes

Injected change to the data

HTM works well on real-world problems

HTM adapts quickly to changes in 
statistics due to its continuous 
unsupervised Hebbian learning rule.

(Cui et al., 2016)


