Robust dendritic computations with Solution Numenta sparse distributed representations

Subutai Ahmad^{*}, Max Schwarzer, Jeff Hawkins

sahmad@numenta.com, maxa.schwarzer@gmail.com, jhawkins@numenta.com

SUMMARY

Cortex encodes information with sparse distributed patterns. How accurately can neurons recognize sparse patterns?

We show:

1) Scaling laws for computing error probabilities.

2) High dimensional sparse patterns can be classified extremely reliably, even with large amounts of noise.

MODELING DENDRITES

3) Active dendritic segments can reliably classify patterns using a tiny number of synapses.

4) The equations explain experimentally observed NMDA spike thresholds in active dendrites.

5) Behavior of Poirazi-Mel and HTM neuron models closely match theoretical predictions. Understanding the behavior can lead to dramatically improved accuracies.

PROBABILITY OF FALSE POSITIVES

Probability of a random input matching a dendrite:

$$P(\mathbf{A}_t \cdot \mathbf{D} \ge \theta) = \frac{\sum_{b=\theta}^s |\Omega_{\mathbf{D}}(n, a_t, b)|}{\binom{n}{a_t}}$$

The probability of error decreases dramatically

$$\begin{split} |\Omega_{\mathbf{D}}(n,a,b)| &= \text{number of input vectors} \\ \text{that exactly match b synapses:} \\ |\Omega_{\mathbf{D}}(n,a,b)| &= \begin{pmatrix} s \\ b \end{pmatrix} \times \begin{pmatrix} n-s \\ a-b \end{pmatrix} \\ & \uparrow \\ \text{Number of ways to select} \\ & \uparrow \\ \text{Number of vectors that have $a-b$ bits on and no overlap with dendrite.} \end{split}$$

A tiny number of synapses, subsampling from a much

FALSE NEGATIVES

Probability of a corrupted pattern *not* matching a dendrite:

$$P(\mathbf{A}_t^* \cdot \mathbf{D} < \theta) = \frac{\sum_{b=s-\theta+1}^s |\Omega_D(a_t^*, v, b)|}{\binom{a_t^*}{v}}$$

A* is a corrupted pattern represented in D, with v bits missing.

PREDICTS NMDA SPIKE THRESHOLDS

Active dendrites independently recognize patterns: as few as 8 co-active synapses can generate NMDA spike. Neural activity is unreliable and noisy, so how can such a tiny number of synapses reliably detect patterns?

VASTLY IMPROVED CLASSIFICATION

Poirazi-Mel neuron with *m* independent dendritic segments.

Original paper tested populations of these neurons on binary classification tasks, using input dimensionality n=400, of which 40 components were on (10% sparsity).

We tested this neuron model by varying the dimensionality and sparsity of the inputs.

Our equations show that the small NMDA thresholds observed in biology can be explained by high dimensional sparse representations. NMDA threshold of 8 leads to median error of less than 1 in 10 million with 50% noise.

n:1,000 to 20,000, sparsity:0.5% to 3%, s:20 to 50

Large improvement with high dimensional sparse representations, even with constant number of synapses, as predicted by our theory.

Poirazi and Mel, 2001