
EXPERIMENTALLY TESTABLE HYPOTHESES
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Robustness to damage
 - Input stream contained high-order 
      sequences mixed with random
      elements. 
    - The maximum prediction accuracy 
      for this data stream is 50%
    - After the network reached stable 
      performance we inactivated a random 
      subset of neurons.
    - Network can handle significant faults
    - Network rapidly recovers performance 

Impact of NMDA spikes
 - Dendritic NMDA spikes cause cells to fire faster than they would otherwise.
 - Fast local inhibitory networks (e.g. minicolumns) inhibit cells that don’t fire early.
 - Sparser activations during a predictable sensory stream. 
 - For predictable natural stimuli, dendritic spikes will be more frequent than APs.
       (Vinje & Gallant, 2002; Smith et al, 2013; Wilmes et al, 2016; Moore et al, 2017)

Branch specific plasticity
 - Strong LTP in dendritic branch when NMDA spike followed by back action potential (bAP). 
 - Weak LTP (without NMDA spike) if synapse cluster becomes active followed by a bAP.
 - Weak LTD when an NMDA spike is not followed by an action potential/bAP.
 (Holthoff et al, 2004; Losonczy et al, 2008; Yang et al, 2014; Cichon & Gang, 2015)

Correlation structure
 - Low pair-wise correlations between cells but significant high-order correlations.
 - High order assembly correlated with specific point in a predictable sequence.
 - Unanticipated inputs leads to a burst of activity, correlated within minicolumns.
 - Activity during predicted inputs will be a subset of activity during unpredicted inputs.
 - Neighboring mini-columns will be uncorrelated.
 (Ecker et al, 2010; Smith & Häusser, 2010; Schneidman et al, 2006; Miller et al, 2014; Homann et al, 2017)
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All code available as open source: https://github.com/numenta
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Untangling Sequences
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There are two fundamental types of sequences
   - Sensory inputs can change due to 1) external
     factors, or 2) our own behavior

   - These sequences are often mixed and must be 
     untangled

   - Network containing temporal and location
     contextual inputs automatically separates them

Simulation with mixed random sequences
    - Each sequence is either temporal or sensorimotor 
      (50 temporal sequences and 50 sensorimotor)

    - Same sensory features for both sequence types

    - Location signal is random for temporal sequences 

Inferring combined sensorimotor and temporal sequence streams

Yale-CMU-Berkeley (YCB) Object Benchmark   
    - 80 objects designed for robotics grasping tasks
    - Includes high-resolution 3D CAD files
      (Calli et al, 2017)

Sensorimotor simulations
    - Created a virtual hand using Unity game engine
    - Curvature based sensor on each fingertip
    - Used sensorimotor sequence and object layers
    - 98.7% recall accuracy (77/78 uniquely classified)
    - Convergence time depends on object, sequence
      of sensations

Object layer
   - Pools over sparse activity from 
      sensorimotor layer
    - Stable while sensing an object

Sensorimotor layer
    - Sequence memory layer
    - Uses motion derived location signal
      as context for predictions
    - Sparsely active cells represent 
      sensory features at specific locations

Sensorimotor Sequences
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Excellent performance
    - HTM sequence memory on par
      with best deep learning system
    - Network responds far better than
      those systems when statistics
      change

Real World Sequence Prediction Tasks

Temporal Sequence
Layer 

 

Data  Predictions 

 
 

Sparse 
Encoder 

Readout 
Classifier 

2015-04-20
   Monday

2015-04-21
Tuesday

2015-04-22
Wednesday

2015-04-23
   Thursday

2015-04-24  
    Friday

2015-04-25
  Saturday

2015-04-26
   Sunday

0k

5k

10k

15k

20k

25k

P
as

se
ng

er
 C

ou
nt

 

  Data sources: http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

Task: predict taxi passenger count in NYC
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HTM adapts quickly to changes
    - HTM adapts more quickly to changes in
      statistics due to its continuous unsupervised
      Hebbian learning rule

Injected change to the data

(Cui et al., 2016)
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RESULTS

ACTIVE DENDRITES ENABLE A POWERFUL SEQUENCE MEMORY

Network Model for Sequence Learning

Disambiguating high-order sequences: ABCD vs XBCY

t=0

t=1

t=0

t=1

Predicted input

Sensory input Sensory input

No predictions

Context

Activation rules 
    - Cells within a minicolumn learn same receptive field
    - Distal dendritic segment learn contextual patterns
    - Active segments act as predictions and bias cells

    - With sensory input, these cells fire first and inhibit others.
      This creates a very sparse code representing this input
      in this particular context.

    - Without predictions, all cells in minicolumn become active

Branch specific Hebbian-style plasticity
    - If predicted cell becomes active, reinforce active segment 
    - If predicted cell does not become active, apply decay
    - If no cell in active minicolumn was predicted, reinforce 
      most active segment.

Active cells

Depolarized 
(predictive) cells

Inactive cells

The Predictive Neuron

Neuron model

Proximal synapses define the feedforward 
receptive field
Distal dendritic segments detect context 
and put the cell into a depolarized or “pre-
dictive” state. Depolarized cells fire sooner 
and inhibit nearby neurons.

 

Pyramidal neuron

5K to 30K synapses
10% proximal, 90% distal

Active dendrites
8-15 co-active co-located 
synapses generate a 
dendritic NMDA spike

Sustained depolarization 
of soma but doesn’t lead 
to action potential.

Major, Larkum and Schiller 2013
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SUMMARY
                  Sequence learning is ubiquitous in cortex

What are the neural mechanisms for sequence learning?

In this poster we show that:
1) Neurons can recognize temporal context and make predictions using active dendrites
2) Network of neurons with active dendrites form a powerful sequence memory
3) The network can learn both external temporal sequences and sensorimotor sequences
4) The network demonstrates excellent performance on real world problems

HTM = Hierarchical Temporal Memory

Stream of sensory inputs 

...

Sequence recognition
Sequence prediction
Behavior generation

The predictive neuron, how active dendrites enable 
spatiotemporal computation in the neocortex
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