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Unsupervised Learning of Relative Landmark Locations Using Grid Cells

1. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). 
Microstructure of a spatial map in the entorhinal cortex. Nature, 
436(7052), 801–806. https://doi.org/10.1038/nature03721
2. Sreenivasan, S., & Fiete, I. (2011). Grid cells generate an analog 
error-correcting code for singularly precise neural computation. 
Nature Neuroscience, 14(10), 1330–1337. https://-
doi.org/10.1038/nn.2901
3. Lewis, M., & Hawkins, J. (2018). A neural mechanism for determining 
allocentric locations of sensed features. Cosyne Abstracts 2018, 
Denver, CO, USA.
4. Fiete, I. R., Burak, Y., & Brookings, T. (2008). What Grid Cells Convey 
about Rat Location. Journal of Neuroscience, 28(27), 6858–6871. 
https://doi.org/10.1523/JNEUROSCI.5684-07.2008

5. Hawkins, J., Ahmad, S., & Cui, Y. (2017). A Theory of How Columns in the 
Neocortex Enable Learning the Structure of the World. Frontiers in Neural 
Circuits, 11(81), 1–18. https://doi.org/10.3389/fncir.2017.00081
6. Hawkins, J., & Ahmad, S. (2016). Why Neurons Have Thousands of Synaps-
es, a Theory of Sequence Memory in Neocortex. Frontiers in Neural Circuits, 
10(23), 1–13. https://doi.org/10.3389/fncir.2016.00023
7. Ahmad, S. (2018). Locations in the neocortex: a theory of sensorimotor 
prediction using cortical grid cells. CNS Workshops 2018, Seattle, WA, USA.
8. Bush, D., Barry, C., Manson, D., & Burgess, N. (2015). Using Grid Cells for 
Navigation. Neuron, 87(3), 507–520. https://doi.org/10.1016/j.neu-
ron.2015.07.006

• We predict that there is stable neuron activity that represents a local environment
independent of context
• Analogous circuits exist in the neocortical circuit7

• Substituting a temporal signal rather than spatial motor command for path
integration may provide a mechanism for learning temporal sequences
• Integration of multiple sensors and hierarchical networks are future extensions
• Currently working on integrating orientaion

Discussion

• Representations of environments through neural activity, without learning
• Displacement cells provide generalization
• Required number of displacement cells grows quadratically with the size of the 
location layer union

• Learning more complex landmarks mitigates the issue
• Composition of environments in a hierarchical network is possible

• Network trained on 1000 environments , each with 16 locations 
containing random landmarks from a pool of 5 unique landmarks
• The network is able to distinguish between environments with 
substantial noise, with only minor degradation from ideal
• A bag-of-features model is not able to distinguish environments 
due to the small number of unique landmarks

• We propose that displacement cells encode the relative position of pairs of landmarks 
and that sets of displacement cells provide robust representations of environments
• Simulations show the model’s ability to learn and distinguish among many complex 
environments with high noise tolerance

• Grid cells provide location codes, spatially related through 
path integration1
• Multiple grid cell modules provide unique location codes for many large
environments2
• We have shown that displacement modules encode spatial relationships between 
grid cell reference frames3

1. Sensory inputs drive the input layer
2. Input layer activity drive cells in the location 
layer based on learned connections
3. Pairs of cells in each location module drive dis-
placement cells that encode the relative positions
4. Motor input shifts the active location layer cells
5. Displacement cells plus newly active location 
cells drive additional cells in the location modules
6. The set of active location layer cells provide lat-
eral input to the sensory input layer, predicting 
the next sensory input
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Sensory input causes mini-
column “bursting” with no 
predicted cells

Distal input causes cells to 
be predicted and win out

A single cell per column 
uniquely encodes the
context for inputs

This model assumes
compartmental neurons with 
separate proximal basal and 
distal basal dendrites. See 
Hawkins and Ahmad, 20166.

Input Layer Predictions

Grid Cells

Displacement Modules

D

C

Cells in Module 1
(sorted)

Cells in Module 2
(sorted)

B

A
Environment

Environment

L2-L1L3-L2

L3-L1

L3-L1

L2-L1

L3-L2

L2-L1 L3-L2

L3-L1

0 1 2

2
1

0

L1

0 1 2

2
1

0 L2

L3

L3

0 1 2

2
1

0

L1 3L1|L3

0 1 2

2
1

0 L2

0 1 2

2
1

0

L1

0 1 2

2
1

0

L2

G
rid

 C
el

l
M

od
ul

es
D

is
pl

ac
em

en
t

M
od

ul
es

• Grid cell modules maintain a union 
of recent activity. Path integration 
shifts this activity with each
movement.
• Displacement modules encode the 
relative locations of landmarks
• Two environments that share
relative landmark con�gurations will 
share displacements
• The same displacements will be
activated for any traversal order

Results
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A. Single cell �ring �elds form a hex-
agonal lattice over environments
B. Grid cells in the same module have 
di�erent phases but the same scale 
and orientation
C. Other modules have di�erent 
scales and orientations
D. Multiple modules uniquely 
encode locations over many large 
environments


